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Abstract. The Hubbard model is a ‘highly oversimplified model’ for electrons in a solid
which interact with each other through extremely short-ranged repulsive (Coulomb) interaction.
The Hamiltonian of the Hubbard model consists of two parts:Hhop which describes quantum
mechanical hopping of electrons, andHint which describes non-linear repulsive interaction.
EitherHhop or Hint alone is easy to analyse, and does not favour any specific order. But their
sumH = Hhop+ Hint is believed to exhibit various non-trivial phenomena including metal–
insulator transition, antiferromagnetism, ferrimagnetism, ferromagnetism, Tomonaga–Luttinger
liquid, and superconductivity. It is believed that we can find various interesting ‘universality
classes’ of strongly interacting electron systems by studying the idealized Hubbard model.

In the present article we review some mathematically rigorous results relating to the Hubbard
model which shed light on the ‘physics’ of this fascinating model. We mainly concentrate on
the magnetic properties of the model in its ground states. We discuss the Lieb–Mattis theorem
on the absence of ferromagnetism in one dimension, Koma–Tasaki bounds on the decay of
correlations at finite temperatures in two dimensions, the Yamanaka–Oshikawa–Affleck theorem
on low-lying excitations in one dimension, Lieb’s important theorem for the half-filled model on
a bipartite lattice, Kubo–Kishi bounds on the charge and superconducting susceptibilities of half-
filled models at finite temperatures, and three rigorous examples of saturated ferromagnetism
due to Nagaoka, Mielke, and Tasaki. We have tried to make the article accessible to non-experts
by giving basic definitions and describing elementary materials in detail.
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1. Introduction

According to the textbook of Ashcroft and Mermin, the Hubbard model is ‘a highly over-
simplified model’ for strongly interacting electrons in a solid. The Hubbard model is a kind
of minimum model which takes into account quantum mechanical motion of electrons in a
solid, and non-linear repulsive interaction between electrons. There is little doubt that the
model is too simple to describe actual solids faithfully.

Nevertheless, the Hubbard model is one of the most important models in theoretical
physics. In spite of its simple definition, the Hubbard model is believed to exhibit
various interesting phenomena including metal–insulator transition, antiferromagnetism,
ferrimagnetism, ferromagnetism, Tomonaga–Luttinger liquid, and superconductivity.
Serious theoretical studies have also revealed that understanding various properties of the
Hubbard model is a very difficult problem. We believe that in the course of achieving
a deeper understanding of the Hubbard model, we will learn many new physical and
mathematical techniques, concepts, and ways of thinking. Perhaps a more important
point comes from the idea of ‘universality’. We believe that non-trivial phenomena and
mechanisms found in the idealized Hubbard model can also be found in other systems in
the same ‘universality class’ as the idealized model. The universality class is expected to
be sufficiently large and rich that it contains various realistic strongly interacting electron
systems with complicated details which are ignored in the idealized model.

The situation is very similar to that of the Ising model for classical spin systems. The
Ising model is too simple to be a realistic model of magnetic materials, but has turned
out to be extremely important and useful in developing various notions and techniques in
statistical physics with many degrees of freedom. Many important universality classes (of
spin systems and field theories) were discovered by studying the Ising model.

In the present article, we review some mathematically rigorous results† known for
the Hubbard model. We shall concentrate mainly on magnetic properties of the model
in its ground state, i.e., for zero temperature. We have also decided not to cover many
important rigorous and/or exact results for one-dimensional models based on the Bethe
ansatzsolutions. Even with these restrictions, we do not try to cover all of the remaining
existing rigorous results. We recall that there is an excellent review article by Lieb [1]
which covers wider topics than we do here. As for the more restricted topics of Nagaoka’s
ferromagnetism, flat-band ferromagnetism, and some related results, there is a separate
review [2] which is more detailed and elementary than the present one.

† In order to reduce the number of references, we have decided not to include many important references on the
related topics which do not provide rigorous results.
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2. The Hubbard model

2.1. Definition of the Hubbard model

We first give a general definition of the Hubbard model†. Let the lattice3 be a collection
of sites x, y, . . .. Physically speaking, each lattice site corresponds to an atomic site in
a crystal. In the standard Hubbard model, one simplifies the situation considerably, and
assumes that each atom has only one electron orbit and that the corresponding orbital state
is non-degenerate‡. Of course actual atoms can have more then one orbit (or band) and
electron in the corresponding states. The philosophy behind the model building is that those
electrons in other states do not play significant roles in the low-energy physics that we are
interested in, and can be ‘forgotten’ for the moment. See figure 1.

a)

b)

c)

d)

Figure 1. A highly schematic diagram which explains the philosophy of tight-binding
descriptions. (a) A single atom with multiple electrons in different orbits. (b) When atoms
come together to form a solid, electrons in the black orbits become itinerant, while those in the
light grey orbits are still localized at the original atomic sites. Electrons in the grey orbits are
mostly localized around the atomic sites, but tunnel to nearby grey orbits with non-negligible
probabilities. (c) We only consider the electrons in the grey orbits, which are expected to play
essential roles in determining various aspects of the low-energy physics of the system. (d) If
the grey orbit is non-degenerate, we get a lattice model in which electrons ‘live’ on lattice sites
and hop from one site to another.

By c†x,σ , we denote the operator which creates an electron with spinσ = ↑,↓ at site
x ∈ 3. The corresponding annihilation operator iscx,σ , andnx,σ = c†x,σ cx,σ is the number
operator. These fermion operators obey the canonical anticommutation relations{

c†x,σ , cy,τ
} = δx,yδσ,τ (2.1)

and {
c†x,σ , c

†
y,τ

} = {cx,σ , cy,τ} = 0 (2.2)

† The readers who are new to the field are recommended to take a look at [2], which contains a more careful
introduction to the Hubbard model.
‡ Such a model is usually referred to as a single-band Hubbard model. This terminology is confusing since such a
model can possess more than one (single-electron) band, depending on the lattice structure. Perhaps ‘single-orbital
Hubbard model’ is better terminology.
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where{A,B} = AB + BA.
By 8vac, we denote the state without any electrons. We havecx,σ8vac = 0 for any

x ∈ 3 andσ = ↑,↓. The Hilbert space of the model is generated by the states obtained
by successively operating with the creation operatorc

†
x,σ with variousx andσ on the state

8vac. Since the anticommutation relation (2.2) implies that(c
†
x,σ )

2 = 0, each lattice site can
either be vacant, occupied by an↑ or ↓ electron, or occupied by both↑ and↓ electrons.
The total dimension of the Hilbert space is thus† 4|3|.

The Hamiltonian of the Hubbard model is most naturally represented as the sum of two
terms as

H = Hhop+Hint. (2.3)

The most general form of the hopping HamiltonianHhop is‡

Hhop=
∑
x,y∈3

∑
σ=↑,↓

tx,yc
†
x,σ cy,σ . (2.4)

The hopping amplitudetx,y = ty,x , which is assumed to be real, represents the quantum
mechanical probability that an electron hops from sitex to y (or from y to x). Whenx = y,
the summand in (2.4) becomestx,xc

†
x,σ cx,σ = tx,xnx,σ , which is nothing but a single-body

potential.
The interaction HamiltonianHint is written as

Hint =
∑
x∈3

Uxnx,↑nx,↓ (2.5)

whereUx > 0 is a constant. The Hamiltonian represents a non-linear interaction which
raises the energy byUx when two electrons occupy a single-orbital state atx. Although
the original Coulomb interaction is long ranged, we have ‘oversimplified’ the situation and
taken into account just the strongest part of the interaction§. Another interpretation is that
the Coulomb interaction is screened by the electrons in different orbital states which we
had decided to forget.

2.2. Some physical quantities

We shall define some basic conserved quantities. The total-number operator

N̂e =
∑
x∈3
(nx,↑ + nx,↓) (2.6)

commutes with the HamiltonianH . Although there are some conserved quantities other
thanN̂e, one usually discusses stationary states or equilibrium states of the system with just
the eigenvalue or the expectation value ofN̂e kept constant‖. In the present article, we
mostly¶ consider the Hilbert space in which the number operatorN̂e has a fixed eigenvalue

† Throughout the present article we denote by|S| the number of elements in a setS.
‡ A standard convention is to put a minus sign in front of the summation in (2.4), and to assumetx,y > 0.
However, it seems that there is no simple reason for the hopping amplitude to have such a sign. If the system is
bipartite (see definition 5.1), one can change the signs of alltx,y (x 6= y) by performing a gauge transformation

c
†
x,σ →−c†x,σ for all x ∈ A.
§ There are many important works on various extended Hubbard models in which one takes into account other
short-range interactions which arise from the original Coulomb interaction. See [3–6] and many references therein.
‖ For example the total spin is also a conserved quantity. But we do not fix its eigenvalue or expectation value,
since the total spin is not definitely conserved in reality because there is anLS-coupling and the actual solids are
not rotation invariant. The situation for̂Ne is essentially different since the charge conservation is an exact law.
See section 2.2 of [2].
¶ Section 5.4 is the only exception.
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Ne. Since each lattice site can have at most two electrons, we have 06 Ne 6 2|3|. The
total electron numberNe is the most fundamental parameter in the Hubbard model.

The spin operator̂Sx = (Ŝ(1)x , Ŝ(2)x , Ŝ(3)x ) at sitex is defined by

Ŝ(α)x =
1

2

∑
σ,τ=↑,↓

c†x,σ (p
(α))σ,τ cx,σ (2.7)

for α = 1, 2, and 3, wherep(α) are the Pauli matrices. The operators for the total spin of
the system are defined as

Ŝ
(α)
tot =

∑
x∈3

Ŝ(α)x (2.8)

for α = 1, 2, and 3. The operator̂S(α)tot commutes both with the hopping HamiltonianHhop,
equation (2.4), and with the interaction HamiltonianHint, equation (2.5). In other words,
these Hamiltonians are invariant under any global rotation in the spin space.

As the operatorŝS(α)tot with α = 1, 2, 3 do not commute with each other, we follow the
convention in the theory of angular momenta, and simultaneously diagonalize the total-spin
operatorsŜ(3)tot :

(Ŝtot)
2 =

3∑
α=1

(Ŝ
(α)
tot )

2

and the HamiltonianH . We denote byS(3)tot andStot(Stot + 1) the eigenvalues of̂S(3)tot and
(Ŝtot)

2, respectively. For a given electron numberNe, we let

Smax=
{
Ne/2 when 06 Ne 6 |3|
|3| − (Ne/2) when |3| 6 Ne 6 2|3|. (2.9)

Then the possible values ofStot areStot = 0, 1, . . . , Smax (or Stot = 1/2, 3/2, . . . , Smax).
When we discuss the magnetism of the system, the most important issue is that of how

to determine the value ofStot in the ground state(s). If the total spin of the ground state
grows proportionally to the number of sites|3| as we increase the size of3, we say that
the system exhibits ferromagnetism in a broad sense. This roughly means that the system
behaves as a ‘magnet’. If the total spin of the ground state(s) coincides with the maximum
possible valueSmax, we say that the system exhibits saturated ferromagnetism.

The following quantity will be useful in the later analysis.

Definition 2.1 (the lowest energy for eachStot ). Fix the electron numberNe. For S =
0, 1, . . . , Smax (or S = 1/2, 3/2, . . . , Smax), we denote byEmin(S) the lowest possible energy
among the states which satisfŷNe8 = Ne8 and(Ŝtot)

28 = S(S + 1)8 (i.e., Stot = S).

The appearance of saturated ferromagnetism is equivalent to havingEmin(S) >

Emin(Smax) for any S such thatS < Smax.

3. Basic facts about the model

In order to understand the meaning of the Hamiltonian of the Hubbard model, we discuss
the physics that we encounter in two limiting situations.



4358 H Tasaki

3.1. Non-interacting systems

Let us assume that the Coulomb interaction inHint, equation (2.5), satisfiesUx = 0 for
any x ∈ 3. Since the remaining HamiltonianH = Hhop, equation (2.4), is a quadratic
form in fermion operators, it can be diagonalized easily (in principle). The single-electron
Schr̈odinger equation corresponding to the hopping HamiltonianHhop, equation (2.4), is∑

y∈3
tx,yϕy = εϕx (3.1)

where ϕ = (ϕx)x∈3 is a single-electron wave function, andε is the single-electron
energy eigenvalue. We shall denote the eigenvalues and the eigenstates of (3.1) asεj

andϕ(j) = (ϕ(j)x )x∈3, respectively, where the index takes the valuesj = 1, 2, . . . , |3|. We
count the energy levels taking degeneracies into account, and order them asεj 6 εj+1.

Let us discuss a simple and standard example. Take a one-dimensional lattice
3 = {1, 2, . . . , N}, and impose a periodic boundary condition which identifies the site
1 with the siteN + 1. As for the hopping matrix elements, we settx,x+1 = tx+1,x = −t ,
andtx,y = 0 otherwise. The corresponding Schrödinger equation (3.1) can be solved easily.
By using the wavenumberk = 2πn/N (with n = 0,±1,±2, . . . ,±{N/2− 1} , N/2), the
eigenstates and the eigenvalues can be written asN−1/2 exp[ikx] and ε(k) = −2t cosk,
respectively. If we establish a suitable correspondence betweenn andj = 1, 2, . . . , N , we
get the desired energy levelεj .

We return to the general setting, and define fermion operators corresponding to the
eigenstatesϕ(j) = (ϕ(j)x )x∈3 by

a
†
j,σ =

∑
x∈3

ϕ(j)x c
†
x,σ . (3.2)

By using the orthonormality of the set of eigenstates(ϕ(j))j=1,2,...,|3| (we redefine the
eigenstates if they do not form an orthonormal set), one finds that the inverse transformation
of (3.2) is cx,σ =

∑|3|
j=1 ϕ

(j)
x aj,σ . Substituting this into (2.4), and by using (3.1), we find

thatHhop can be diagonalized as

Hhop=
∑
σ=↑,↓

|3|∑
j=1

εja
†
j,σ aj,σ =

∑
σ=↑,↓

|3|∑
j=1

εj ñj,σ . (3.3)

Here ñj,σ = a†j,σ aj,σ can be interpreted as the electron number operator for thej th single-
electron eigenstate.

Let A,B be two arbitrary subsets of{1, 2, . . . , |3|} which satisfy|A| + |B| = Ne. By
using (3.3), we find that the state

8A,B =
(∏
j∈A

a
†
j,↑

)(∏
j∈B

a
†
j,↓

)
8vac (3.4)

is an eigenstate ofH = Hhop and its energy eigenvalue is

EA,B =
∑
j∈A

εj +
∑
j∈B

εj . (3.5)

By choosing subsetsA,B which minimize EA,B , we get ground state(s) of the non-
interacting model.
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Figure 2. A schematic diagram of the ground state of a non-interacting many-electron system.
The lowestNe/2 single-electron energy levels are ‘filled’ by both up-spin and down-spin
electrons. The state naturally exhibits a type of paramagnetism known as Pauli paramagnetism.

In particular if the corresponding single-electron energy eigenvalues are non-degenerate,
i.e., εj < εj+1, andNe is even, the ground state ofH = Hhop is unique and is written as

8GS=
(
Ne/2∏
j=1

a
†
j,↑a

†
j,↓

)
8vac. (3.6)

This is nothing but the state obtained by ‘filling up’ the low-energy levels with up- and
down-spin electrons, as one learns in elementary quantum mechanics (figure 2). It is easily
verified that the above state has a definite total spinStot = 0. The ground state (3.6)
exhibits no long-range order. A system with no magnetic ordering is usually said to exhibit
paramagnetism†.

In the simple example in one dimension, all of the energy levels exceptε(0) = −2t
and ε(π) = 2t are twofold degenerate. In this case the ground state ofH = Hhop may
not be unique for some values ofNe. However, the degeneracy of the ground states is at
most fourfold, and the total spin of the ground states can take the valuesStot = 0, 1/2, and
1. We can conclude that the property of the ground state(s) is essentially the same as that
in the models without degeneracy. In general we can draw the same conclusion unless the
single-electron spectrum has a bulk degeneracy.

In a single-electron eigenstate of the example in one dimension, the electron is in a
plane-wave state with a definite wavenumberk. The fact that the HamiltonianH = Hhop

is diagonalized as (3.3) implies that the electrons behave as ‘waves’ in this non-interacting
(Hubbard) model. The same comment applies to any translation-invariant (Hubbard) model
with Ux = 0.

3.2. Non-hopping systems

Let us next assume that the hopping matrix elements inHhop, equation (2.4), satisfytx,y = 0
for any x, y ∈ 3. Then the remaining HamiltonianH = Hint, equation (2.5), is already in
a diagonal form. A general eigenstate can be written as

9X,Y =
(∏
x∈X

c
†
x,↑

)(∏
x∈Y

c
†
x,↓

)
8vac. (3.7)

† More precisely, this is true when one talks only about magnetism carried by electron spins. If one takes into
account magnetism induced by orbital motion of electrons, the system may exhibit diamagnetism.
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HereX andY are arbitrary subsets of3, and represent lattice sites which are occupied by
up-spin electrons and down-spin electrons, respectively. The total electron number in this
state isNe = |X| + |Y |, and the energy eigenvalue is given by

EX,Y =
∑
x∈X∩Y

Ux. (3.8)

The ground state for a given electron numberNe can be constructed by choosing subsets
X, Y that minimize the energyEX,Y . When one hasNe 6 |3|, one can always chooseX
andY such thatX ∩ Y = ∅. Thus the ground state has energy equal to 0.

The ground states of the non-hopping Hubbard model have no magnetic long-range
order. Again the system is paramagnetic. It is also clear (from the beginning) that the
electrons behave as ‘particles’ in non-hopping models.

3.3. The Hubbard model is difficult, but it is interesting

We have investigated the properties of the two partsHhop andHint in the Hubbard Hamil-
tonian. It turned out that bothHhop andHint are easy to analyse. We also found that neither
of them favours any magnetic ordering.

We also observed, however, that electrons behave as ‘waves’ forHhop, while they behave
as ‘particles’ forHint. How do they behave in a system with a Hamiltonian which is the
sum of these totally different Hamiltonians? This is indeed a fascinating problem which is
deeply related to the wave–particle dualism in quantum physics. We might say that many
of the important models in many-body problems, including theϕ4-quantum-field theory and
the Kondo problem, are minimum models which take into account at the same time the
wave-like nature and the particle-like nature (through point-like non-linear interaction) of
matter.

From a technical point of view, the wave–particle dualism implies that the Hamiltonians
Hint areHhop do not commute with each other. Even when each Hamiltonian is diagonal-
ized, it is still highly non-trivial (or impossible) to find the properties of their sum. Of
course mathematical difficulty does not automatically guarantee that the model is worth
studying. A really exciting thing about the Hubbard model is that, though the Hamiltonians
Hhop andHint do not favour any non-trivial order, their sumH = Hhop+Hint is believed to
generate various types of non-trivial order including antiferromagnetism, ferromagnetism,
and superconductivity. When we sum the two ‘innocent’ HamiltoniansHhop and Hint,
competition between wave-like character and particle-like character (or between linearity and
non-linearity) takes place, and one gets various types of interesting ‘physics’. Confirming
this fascinating scenario is a very challenging problem for theoretical and mathematical
physicists.

4. Results for low-dimensional models

We discuss some theorems which are proved by using the special natures of low-dimensional
systems.

4.1. The Lieb–Mattis theorem

Theorems discussed in the present and the next sections state that the Hubbard model
does not exhibit interesting long-range order under certain conditions. The main purpose
of studying an idealized model like the Hubbard model is to show that some interesting
physicsdoesarise. Results which say somethingdoes nottake place may be regarded as less
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exciting. But to have a definite knowledge that something does not happen under certain
conditions is very useful and important even if our final goal is to show that something does
happen.

The classical Lieb–Mattis theorem [7] states (among other things) that one can never
have ferromagnetism in the one-dimensional Hubbard model with only nearest-neighbour
hoppings†.

Theorem 4.1 (the Lieb–Mattis theorem).Consider a Hubbard model on a one-dimensional
lattice 3 = {1, 2, . . . , N} with open boundary conditions. We assume that the hopping
matrix elements satisfy|tx,y | < ∞ when x = y, 0 < |tx,y | < ∞ when |x − y| = 1, and
are vanishing otherwise. We also assume that|Ux | <∞ for any x ∈ 3. Then the quantity
Emin(S) (see definition 2.1) satisfies the inequality

Emin(S) < Emin(S + 1) (4.1)

for any S = 0, 1, . . . , Smax− 1 (or S = 1/2, 3/2, . . . , Smax− 1).

One of the most important consequences of the Lieb–Mattis theorem is that any one-
dimensional Hubbard model in the above class has the total spinStot = 0 (or Stot = 1/2)
in its ground state. One cannot conclude from this fact alone that the system exhibits
paramagnetism, but can conclude that there is no ferromagnetism.

Theorem 4.1 does not apply to models with periodic boundary conditions. But it seems
reasonable that the boundary conditions do not change the essential physics provided that
the system is sufficiently large. If there exist hoppings to sites further away than the nearest
neighbour, on the other hand, the story is totally different. We not only find that the proof
of theorem 4.1 fails, but we also find essentially new physics. See section 6.5.

Theorem 4.1 is proved by noting that, in a suitable basis, the Hamiltonian is written as
a matrix whose non-diagonal elements are non-positive, and by using the standard Perron–
Frobenius argument. A similar argument was used by Lieb and Mattis in their study of the
Heisenberg quantum spin system [8].

4.2. Decay of correlations at finite temperatures

Among other rigorous results which show the absence of order are the extensions by Ghosh
[9] and by Uhrig [10] of the well known theorem of Mermin and Wagner. Ghosh proved
that the Hubbard model in one or two dimensions does not exhibit symmetry breaking
related to magnetic long-range order at any finite temperatures. Uhrig similarly ruled out
the possibility of general planar magnetic ordering. By using the same method, one can
also prove the absence of superconducting U(1) symmetry breaking.

Koma and Tasaki proved essentially the same facts in terms of explicit upper bounds
for various correlation functions [11]. Among the results of [11] is the following.

Theorem 4.2 (Koma–Tasaki bounds for correlations).Consider an arbitrary Hubbard model
in one or two dimensions with finite-range hoppings. Then there are constantsα, γ , and
we have ∣∣∣∣〈c†x,↑c†x,↓cy,↑cy,↓ + HC

〉
β

∣∣∣∣ 6
{
|x − y|−αf (β) for d = 2

exp[−γf (β)|x − y|] for d = 1
(4.2)

† The present theorem appears in the appendix of [7]. The main body of [7] treats interacting electron systems in
continuous spaces.
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and ∣∣∣〈Sx · Sy 〉β ∣∣∣ 6
{
|x − y|−αf (β) for d = 2

exp[−γf (β)|x − y|] for d = 1
(4.3)

for sufficiently large |x − y|, where 〈· · ·〉β denotes the canonical average in the
thermodynamic limit at the inverse temperatureβ. Here f (β) is a decreasing function
of β and is such thatf (β) ≈ 1/β for β � δ andf (β) ≈ (2/δ)|lnβ| for β � δ, whereδ
is a constant.

The bounds (4.2) and (4.3) establish the widely accepted fact that there can be
no superconducting† or magnetic long-range order at finite temperatures in one or two
dimensions. The method employed in [11], i.e., a combination of the McBryant–Spencer
method and the quantum mechanical global U(1) gauge invariance, is rather interesting. It
is amusing that only by using the U(1) symmetry, which exists inany quantum mechanical
system, does one get upper bounds for correlations which are almost optimal at low
temperatures (especially in one dimension).

4.3. The Yamanaka–Oshikawa–Affleck theorem

We discuss a recent important theorem of Yamanaka, Oshikawa, and Affleck [12, 13]
concerning low-lying excitations in general electron systems on a one-dimensional lattice.
The theorem is an extension of the Lieb–Schultz–Mattis theorem for quantum spin chains.
It can also be interpreted as a non-perturbative version of Luttinger’s ‘theorem’ restricted
to one dimension.

We consider the Hubbard model‡ on the one-dimensional lattice3 = {1, 2, . . . , N} with
periodic boundary conditions. The model is characterized by positive integersR andP ,
which are the range of the hopping and the period of the system, respectively. We assume
that tx,y = 0 whenever|x − y| > R, and tx+P,y+P = tx,y , Ux+P = Ux for any x, y ∈ 3.
Under this general assumption, we have the following.

Theorem 4.3 (the Yamanaka–Oshikawa–Affleck theorem).Consider the infinite-volume limit
N →∞ with a fixed electron densityν = Ne/N . If Pν/2 is not an integer, then we have
one of the following two possibilities:

(i) there is a symmetry breaking, and the infinite-volume ground states are not unique;
(ii) there is a gapless excitation above the infinite-volume ground state.

In other words, the theorem rules out the third possibility:

(iii) the infinite-volume ground state is unique, and there is a finite gap above it.

Note that (iii) is true ifPν/2 is an integer and the system describes an ‘innocent’
insulator§. In a non-interacting system, it is evident that (iii) is impossible whenPν/2 is
not an integer, since there is a partially filled band. The above theorem guarantees that we
cannot change the situation by introducing strong interaction. This is of course far from
obvious.

† One can easily extend (4.2) to rule out the condensation of other types of electron pair.
‡ The theorem applies to a much larger class of lattice electron systems. It is especially meaningful when applied
to the Kondo lattice model.
§ Consider, for example, a two-band system with a band gap which hasP = 2. Then, in a free system,ν = 1
(the half-filling) corresponds to an insulator with a charge gap.
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The proof of theorem 4.3 is based on the following explicit construction of a (trial)
low-lying excitation†. Consider a system on a periodic chain of lengthN , and assume that
the ground state8GS is unique. We define the ‘twist’ operator by

U = exp

[
2π i

N∑
x=1

(x/N)nx,↑

]
which introduces a gradual twist in the U(1) phase of the up-spin electron field, and consider
the trial excited state9 = U8GS. It is not hard to show that〈9,H9〉 − EGS = O(1/L).
Thus9 contains a low-lying excited state provided that it is orthogonal to the ground state.
To see the orthogonality, letTP be the translation byP , and assume that the ground state
is chosen such thatTP8GS = 8GS. It is easily found thatTP9 = eiπPν9, and hence the
trial state9 is orthogonal to8GS wheneverPν/2 is not an integer.

The above construction implies that, in the case (ii), the gapless excitation9 has a
crystal momentumk9 = πν. If we interpret this excitation as obtained from the ground
state by moving an electron at a ‘Fermi point‡’ to the other Fermi point, we find that the
Fermi momentumkF satisfiesk9 = 2kF, and hencekF = πν/2. This is nothing but the
Fermi momentum of the free system. Therefore the Fermi momentum is not ‘renormalized’
by strong interaction among electrons. As far as we know, this is the only general rigorous
result which gives precise meaning to the Fermi momentum in truly interacting many-
electron systems.

5. Half-filled systems

A system in which the electron numberNe is identical to the number of sites|3| is said
to be half-filled, since the maximum possible value ofNe is 2|3|. The system becomes
half-filled if each atom provides one electron to the system. Thus the half-filled models
represent physically natural situations. Half-filled models have nice properties§ from the
mathematical point of view as well, and there are some very nice rigorous results.

5.1. Perturbation forU � t

Let us first look at the ground states of the non-hopping model withHhop = 0. We here
assume thatUx > 0 for anyx ∈ 3. As we found in section 3.2, one can chooseX∩Y = ∅
in the state9X,Y to get a ground state withEX,Y = 0, provided thatNe 6 |3|. Since we
haveNe = |3|, the assumption thatX ∩ Y = ∅ automatically implies thatX ∪ Y = 3.
Therefore the ground state9X,Y , equation (3.7), withX ∩ Y = ∅ can also be written as

9σ =
(∏
x∈3

c
†
x,σ (x)

)
8vac (5.1)

whereσ = (σ (x))x∈3 is a collection of spin indicesσ(x) = ↑,↓. By using the terminology
of spin systems, one can callσ a spin configuration. One can say that the degeneracy of
the ground states (5.1) precisely corresponds to all of the possible spin configurations.

† Extra care is needed in discussing infinite-volume limits [13].
‡ In a one-dimensional model, the Fermi surface (if any) becomes two ‘Fermi points’.
§ Some half-filled models can be mapped onto a Hubbard model with attractive interaction via a partial hole–
particle transformation. This fact plays a crucial role in the proof of Lieb’s theorem.
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Let us take into account the effects of non-vanishingHhop by using a simple perturbation
theory. As the diagonal elements ofHhop, that is∑

x,σ

tx,xc
†
x,σ cx,σ =

∑
x

tx,x(nx,↑ + nx,↓)

only shift the energy of the states9σ by a constant amount (independent ofσ), they can
be omitted in the lowest-order perturbation calculation. Let us denote by

H̃hop=
∑
x 6=y,σ

tx,yc
†
x,σ cy,σ

the off-diagonal part ofHhop. On operating withH̃hop once on9σ, an electron moves, and
we get a state with one vacant site and one doubly occupied site. The resulting state is not a
ground state ofHint. We thus find that the lowest-order contribution from this perturbation
theory comes from the second order.

x y x y x y

Figure 3. When electrons hop twice, spins on sitesx and y may be exchanged. This is the
ultimate origin of the antiferromagnetic nature of the half-filled Hubbard model.

Figure 3 shows a process that is taken into account in the second-order perturbation
theory. The electron at sitex hops to sitey with the transition amplitudetx,y , and generates
a new state with extra energyUy . Then one of the two electrons at sitey will hop back to
site x, and we recover one of the ground states. In this process, spins at the sitesx andy
may be exchanged as figure 3 shows. The hopping between sitesx andy is inhibited by the
Pauli principle if the electronic spins on these two sites are pointing in the same direction.
We find that this second-order perturbation process lowers the energy of states in which the
spins at sitesx andy are not pointing in the same direction (or more precisely, the states
in which the total spin is vanishing).

Let us rederive this result in a more formal manner. LetP0 be the projection operator
projecting states onto the subspace spanned by the states9σ, equation (5.1), for all of the
possibleσ. That the first-order perturbation makes no contribution can be read off from the
fact thatP0H̃hopP0 = 0. To find out how the degeneracy in the (unperturbed) ground states
(5.1) is lifted, one needs to determine by the effective Hamiltonian

Heff = −P0H̃hop
1

Hint
H̃hopP0 = P0

{∑
x,y∈3

Jx,y

(
Ŝx · Ŝy − 1

4

)}
P0. (5.2)

Here the exchange interaction parameter is given byJx,y = {(tx,y)2/Ux} + {(tx,y)2/Uy}.
Note that (5.2) is nothing but the Hamiltonian of theS = 1/2 antiferromagnetic quantum
Heisenberg spin system. This suggests that the low-energy behaviour of the half-filled
Hubbard model is well described in terms of the Heisenberg antiferromagnets when theUx
are much larger than thetx,y .

5.2. Lieb’s theorem

In 1989, Lieb proved an important and fundamental theorem for the half-filled Hubbard
model. The theorem provides, among other things, partial support to the conjecture that
the half-filled Hubbard model and Heisenberg antiferromagnets are similar. Let us first
introduce the notion of bipartiteness.
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Definition 5.1 (bipartiteness).Consider a Hubbard model (or other tight-binding electron
model) on a lattice3 with hopping matrix elements(tx,y)x,y∈3. The system is said to
be bipartite if the lattice3 can be decomposed into a disjoint union of two sublattices as
3 = A∪B (with A∩B = ∅), andtx,y = 0 holds wheneverx, y ∈ A or x, y ∈ B. In other
words, only hoppings between different sublattices are allowed.

Then Lieb’s theorem [14] for the repulsive Hubbard model is as follows.

Theorem 5.2 (Lieb’s theorem).Consider a bipartite Hubbard model. We assume that|3| is
even, and that the whole of3 is connected† through non-vanishingtx,y . We also assume
thatUx = U > 0 for anyx ∈ 3. Then the ground states of the model are non-degenerate
apart from the trivial spin degeneracy‡, and have total spinStot =

∣∣|A| − |B|∣∣/2.

The total spinStot of the ground state determined in the theorem is exactly the same
as that of the ground state(s) of the corresponding Heisenberg antiferromagnet on the
same lattice. In fact the conclusion of the theorem is quite similar to that of the Lieb–
Mattis theorem [8] for Heisenberg antiferromagnets. However, the straightforward Perron–
Frobenius argument used in the proof of the latter theorem does not apply to the Hubbard
model except in one dimension. (See subsection 4.1.) This is not just a technical difficulty,
but is a consequence of the important fact that quantum mechanical processes allowed in the
Hubbard model are in general much richer and more complex than those in the Heisenberg
model. Lieb’s proof is compactly presented in a letter, but is deep and elegant. The proof
again makes use of a kind of Perron–Frobenius argument, but is based on an interesting
technique called spin-space reflection positivity.

Lieb’s theorem is valid for any value of the Coulomb repulsionU , provided that it is
positive. It is quite likely that physical properties of the Hubbard model are drastically
different in the weak-coupling region with smallU and in the strong-coupling region with
largeU . It is very surprising and interesting that a single proof of Lieb’s theorem covers
the whole range withU > 0 and clarifies the basic properties of the ground states.

It should be noted, however, that knowledge of the total spin of the ground states in
a finite volume does not necessarily allow one to determine the properties of the ground
states in the corresponding infinite system. When two sublattices have the same number
of sites—|A| = |B|, for example—one knows that the finite-volume ground state is unique
and hasStot = 0. Although one might well conclude that the system has no long-range
order in its ground states, this is not true. It is certainly possible that infinite-volume ground
states exhibit long-range order and symmetry breaking (such as antiferromagnetism of the
superconductivity) even when the finite-volume ground state is unique and symmetric. (See,
for example, [15].) If one knows that any finite-volume ground state hasStot = 0, however,
one can rule out the possibility of ferromagnetism.

By using Lieb’s results given in [14], one gets some information about excited states.
For example, by combining theorem 1 in [14] with the method of [8], one can easily prove
the inequality§

Emin(S) < Emin(S + 1) (5.3)

for any
∣∣|A| − |B|∣∣/26 S 6 (|3|/2)− 1.

† More precisely, for anyx, y ∈ 3, one can find a sequence of sitesx0, x1, . . ., xN with x0 = x, xN = y, and
txi ,xi+1 6= 0 for i = 0, 1, . . . , N − 1.
‡ In any quantum mechanical system with a rotation-invariant Hamiltonian, an eigenstate of the Hamiltonian with
the angular momentumJ is always(2J + 1)-fold degenerate.
§ I wish to thank Shun-Qing Shen and Elliott Lieb for discussions related to this corollary.
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Another theorem which suggests the similarity between the half-filled Hubbard model
and the Heisenberg antiferromagnets is the following, proved by Shen, Qiu, and Tian [16, 17]
by extending Lieb’s method.

Theorem 5.3 (explicit signs of correlations).Assume the conditions for theorem 5.2. If we
denote by8GS the ground state of the model, we have the inequalities〈

8GS, Ŝx · Ŝy8GS

〉 {> 0 whenx, y ∈ A, or x, y ∈ B
< 0 whenx ∈ A, y ∈ B, or x ∈ B, y ∈ A (5.4)

where〈 , 〉 denotes the quantum mechanical inner product.

We see that spins on different sublattices have negative correlations, indicating a
tendency towards antiferromagnetism. It should be stressed, however, that this result
provides no information about the existence or absence of antiferromagnetic long-range
order.

The S = 1/2 Heisenberg antiferromagnet on the cubic lattice, for example, is proved
to exhibit an antiferromagnetic long-range order at sufficiently low temperatures or in the
ground states [18, 19]. It is likely that the same statements hold for the half-filled Hubbard
model with sufficiently largeU . But, for the moment, there are no methods or ideas which
are useful in proving this conjecture. To extend the powerful (but not very natural) method
of [18, 19] based on the (spatial) reflection positivity seems hopeless.

For the Hubbard model and related models at half-filling, there have been proved several
interesting general results. Among the recent examples are the uniform-density theorem [20],
the solution of the flux phase problem [21, 22], and the stability of the Peierls instability [23].

5.3. Lieb’s ferrimagnetism

A very important corollary of Lieb’s theorem, theorem 5.2, is that the half-filled Hubbard
models on asymmetric bipartite lattices universally exhibit a kind of ferromagnetism (in the
broad sense), or more precisely, ferrimagnetism [14].

Figure 4. An example (the so-called CuO lattice) of a bipartite lattice in which the numbers of
sites in two sublattices are different. Lieb’s theorem implies that the half-filled Hubbard model
defined on this lattice exhibits ferrimagnetism.

Take, for example, the so-called CuO lattice in figure 4. The lattice can be decomposed
into two sublattices distinguished by black sites and white sites. When the black sites form
a square lattice with sideL, there areL2 black sites and 2L2 white sites. We define the
Hubbard model on this lattice, and assign non-vanishing hoppingtx,y to each bond in the
lattice, and assign Coulomb interactionU > 0 to each site. Then Lieb’s theorem implies
that the ground state of this Hubbard model has total spinStot =

∣∣|A| − |B|∣∣/2 = L2/2.
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Since the total spin magnetic moment of the system is proportional to the number of lattice
sites 3L2, we conclude that the model exhibits ferromagnetism in the broad sense.

Of course the present ferromagnetism is not a saturated ferromagnetism in which all of
the spins in the system completely align with each other. As the inequality (5.4) suggests,
spins on neighbouring sites have a tendency to point in opposite directions. But the big
difference between the numbers of sites in the sublattices cause the system to possess a
bulk magnetic moment. Such a magnetic ordering is usually called ferrimagnetism†.

One can similarly construct Hubbard models which exhibit ferrimagnetism on any
bipartite lattice in which the difference between the number of sites in two sublattices
is proportional to the system size. The value ofU > 0 is again arbitrary, so Lieb’s ferri-
magnetism covers a surprisingly general class of models including weakly coupled ones as
well as strongly coupled ones.

If one recalls the conclusion of section 3.1 that systems withU = 0 exhibit
paramagnetism, one might feel it to be somehow contradictory that the above ferrimagnetism
appears for arbitrarily smallU > 0. This is one of the special features of Lieb’s
ferrimagnetism. In the single-electron Schrödinger equation corresponding to the Hubbard
model in figure 4, for example, the eigenstates for the eigenvalueε = 0 are L2-fold
degenerate. (The eigenvalueε = 0 is at the centre of the single-electron spectrum.)
Consequently the ground states of the half-filled (Ne = |3| = 3L2) system withU = 0 are
highly degenerate, and the total spin can take the valuesStot = 0, 1, . . . , L2/2. The role
of the Coulomb interactionU is to lift this degeneracy, and select states with the largest
magnetic moment as ground states.

5.4. Kubo–Kishi bounds on susceptibilities at finite temperatures

A theorem which can be regarded as a finite-temperature version of Lieb’s theorem was
proved by Kubo and Kishi [24]. It deals with the charge susceptibility and the on-site
pairing (superconducting) susceptibility in a half-filled system at finite temperatures.

We define the thermodynamic function‡ J corresponding to the grand canonical
ensemble by

J (β, µ, (γx)x∈3, (ηx)x∈3) = − 1

β
log Tr exp

[
−β

(
H − µN̂e−

∑
x∈3
σ=↑,↓

γxnx,σ

−
∑
x∈3

ηx(c
†
x,↑c

†
x,↓ + cx,↓cx,↑)

)]
(5.5)

whereβ andµ are the inverse temperature and the chemical potential, respectively, and the
trace is taken over the Hilbert spaces with all of the possible electron numbers. We added
to the Hamiltonian two fictitious external fields(γx)x∈3 and(ηx)x∈3 to test for the possible
charge ordering and superconducting ordering, respectively.

We define the charge susceptibilityχc and the on-site pairing susceptibilityχp by

χc
q(β, µ) = −

∂

∂γ̃q

∂

∂γ̃−q
J (β, µ, (γx), (ηx))

∣∣∣∣
(γx)=(ηx)=0

> 0 (5.6)

and

χp
q (β, µ) = −

∂

∂η̃q

∂

∂η̃−q
J (β, µ, (γx), (ηx))

∣∣∣∣
(γx)=(ηx)=0

> 0. (5.7)

† It is also possible to consider order parameters to see that the order is indeed ferrimagnetic [16].
‡ We haveJ = −pV = F −G.
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The Fourier transformations of the external fields are

γ̃q = |3|−1/2
∑
x∈3

γxeiq·x η̃q = |3|−1/2
∑
x∈3

ηxeiq·x (5.8)

whereq is a wave vector corresponding to the lattice3 (which we assume to have a periodic
structure).

Then the Kubo–Kishi theorem can be stated as follows.

Theorem 5.4 (the Kubo–Kishi theorem).Consider any bipartite (see definition 5.1) Hubbard
model withUx = U > 0 for anyx ∈ 3. Then for anyβ > 0 and for any wave vectorq,
we have

χc
q(β, U/2) 6

1

U
and χp

q (β, U/2) 6
2

U
. (5.9)

Note that the choiceµ = U/2 corresponds to half-filling. The theorem states that the
charge and the on-site paring susceptibilities for any wave vectorq are finite in a half-filled
model at finite temperatures. This means that the model does not exhibit any CDW ordering
or superconducting ordering.

6. Ferromagnetism

Ferromagnetism, where almost all of the spins in the system align in the same direction, is
a remarkable phenomenon. The standard theories about the origin of ferromagnetism have
been the Heisenberg exchange interaction picture, and the Stoner criterion derived from
the Hartree–Fock approximation for band electrons. But there have been serious doubts as
regards whether these theories really explain the appearance of ferromagnetism in a system
of electrons interacting via spin-independent Coulomb interaction. One of the motivations
for studying the Hubbard model was the desire to understand the origin of ferromagnetism
in an idealized situation.

As we have seen in the previous section, half-filled models have a tendency towards
antiferromagnetism. In this section we will concentrate on systems in which the electron
numbers deviate from half-filling.

6.1. Instability of ferromagnetism

To see that ferromagnetism is indeed a delicate phenomenon, we discuss two elementary
results which show that the Hubbard model under certain conditions doesnot exhibit
ferromagnetism†.

The following theorem states that there can be no saturated ferromagnetism if the
Coulomb interactionU is too small in a system with a ‘healthy’ single-electron spectrum.

Theorem 6.1 (impossibility of ferromagnetism for smallU ). Let {εj }j=1,...,N denote the
single-electron energy eigenvalues withεj 6 εj+1 as in section 3.1. If 06 U < εNe − ε1,
we have‡

Emin(Smax− 1) < Emin(Smax). (6.1)

Thus the ground state of the model does not haveStot = Smax.

† Detailed proofs of the results in the present section can be found in [2].
‡ Note that the Fermi energyεNe − ε1 is an intensive quantity.
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When the density of electrons is very low, the chance of electrons colliding with each
other is expected to become very small. It is likely that the model is close to an ideal gas
no matter how strong the interaction is, and there is no ferromagnetism.

This naive guess is easily justified for ‘healthy’ models in three (or more) dimensions.
The dimensionality of the lattice is taken into account by assuming that there are positive
constantsc, ν0, andd, and that the single-electron energy levels satisfy

εn − ε1 > c
(
n− 1

|3|
)2/d

(6.2)

for any n such thatn/|3| 6 ν0. Note that the right-hand side represents then-dependence
of the energy levels in a usuald-dimensional quantum mechanical system. Then we have
the following theorem due to Pieri, Daul, Baeriswyl, Dzierzawa, and Fazekas [25].

Theorem 6.2 (impossibility of ferromagnetism at low densities).Suppose that we haveHhop

satisfying (6.2) with positivec, ν0, andd > 2. Then there exists a constantν1 > 0, and the
same conclusion as in theorem 6.1 holds for anyU > 0 if Ne/|3| 6 ν1 holds.

That we have a restriction on dimensionality in theorem 6.2 is not merely technical. In
a one-dimensional system, moving electrons must eventually collide with each other for an
obvious geometric reason. Thus a one-dimensional model cannot be regarded as close to
ideal no matter how low the electron density is. We do not know whether the inapplicability
of the theorem tod = 2 systems is physically meaningful or not.

6.2. The toy model with two electrons

As a starting point of our study of ferromagnetism, we consider a toy model with two
electrons on a small lattice. Interestingly enough, some essential features of ferromagnetism
found in many-electron systems (that we will discuss later in this section) are already present
in the toy model.

t' t'

t

1 2 3

Figure 5. The lattice and the hopping of the toy model. By considering the system with two
electrons on this lattice, we can observe some very important aspects of ferromagnetism in the
Hubbard model.

The smallest possible model within which there can be electron interaction and which
is away from half-filling is that with two electrons on a lattice with three sites. Consider
the lattice3 = {1, 2, 3}, and set one electron to haveσ = ↑ and one to haveσ = ↓.
The hopping matrix is defined byt1,2 = t2,3 = t ′, and t1,3 = t . Note that there are two
kinds of hopping,t andt ′. Since the sign oft ′ can be changed by the gauge transformation
c2,σ → −c2,σ , we shall fix t ′ > 0. Figure 5 shows the lattice and the hopping. For simp-
licity, we assume there is only one kind of interaction, and setU1 = U2 = U3 = U > 0.
We haveSmax = 1 becauseNe = 2. Therefore we can say that saturated ferromagnetism
appears if the ground state hasStot = 1, i.e., if it is a part of a spin triplet.

Let us take the limitU →∞, in which the effect of interaction becomes most drastic,
and consider only those states with finite energies. This is equivalent to considering only
states in which two electrons never occupy the same site. There are six states which satisfy



4370 H Tasaki

t

t't'

t' t'

t

Φ12

Φ21

Φ13

Φ31

Φ23

Φ32

Figure 6. Allowed states and transition amplitudes in the toy model withU = ∞. The total
spin of the ground states can be easily read off from this diagram.

the constraint, and they can be written as8x,y = c
†
x,↑c

†
y,↓8vac wherex, y = 1, 2, 3, and

x 6= y. The transition amplitudes for transfers between these states are shown in figure 6.
We find that the problem is equivalent to that of a quantum mechanical particle hopping
around on a ring consisting of six sites. The basic structure of the ground state can be
determined from the standard Perron–Frobenius sign convention†. The ground state for
t < 0 is written as

8
(t<0)
GS = 81,2+83,2− α(t, t ′)83,1+82,1+82,3− α(t, t ′)81,3 (6.3)

and that fort > 0 as

8
(t>0)
GS = 81,2−83,2+ β(t, t ′)83,1−82,1+82,3− β(t, t ′)81,3 (6.4)

whereα(t, t ′) andβ(t, t ′) are positive functions oft and t ′.
To find the total spin of these states, it suffices to concentrate on two lattice sites, say

sites 1 and 2, and note that8(t<0)
GS = 81,2 + 82,1 + · · ·, and8(t>0)

GS = 81,2 − 82,1 + · · ·.
It immediately follows that‡ 8(t<0)

GS hasStot = 0, and8(t>0)
GS hasStot = 1. A ferromagnetic

coupling is generated whent > 0!
Let us look at the mechanism which generates the ferromagnetism. The states81,2

and82,1 can be found upper left and the lower right, respectively, in figure 6. By starting
from81,2 and following the possible transitions, one reaches the state82,1. In other words,
electrons hop around in the lattice, and the spins on sites 1 and 2 are ‘exchanged’. When
t > 0, the quantum mechanical amplitude associated with the exchange process generates
the superposition of the two states which precisely yields ferromagnetism.

Let us briefly look at the cases with finiteU . In figure 7, we have plottedEmin(0)
andEmin(1) for the toy model witht = t ′/2 as functions ofU . (See definition 2.1.) As
is suggested by the result in theU → ∞ limit, we have ferromagnetism in the sense that
Emin(0) > Emin(1) whenU is sufficiently large. A level crossing takes place at finiteU ,
and the system is no longer ferromagnetic for smallU . Even in the simplest toy model,
ferromagnetism is a ‘non-perturbative’ phenomenon which arises only whenU is sufficiently
large.

† If the transition amplitude for transfers between two states is negative (positive), one superposes two states with
the same (opposite) signs.
‡ A quick way to find the total spin of the state81,2 + 82,1 is to rewrite the state in the ‘spin language’ as

81,2+82,1 = c†1,↑c†2,↓8vac+ c†2,↑c†1,↓8vac= c†1,↑c†2,↓8vac− c†1,↓c†2,↑8vac= |↑〉1|↓〉2−|↓〉1|↑〉2, and use standard

knowledge about the addition of angular momenta. One can easily convince oneself that the state hasStot = 0.
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2 4
–2.2

–1.6

E / t'

U / t'

Figure 7. The U -dependence ofEmin(0) (grey curve) andEmin(1) (black line) in the toy
model with t = t ′/2. We have ferromagnetism in the sense thatEmin(0) > Emin(1) whenU is
sufficiently large. We find that ferromagnetism is a ‘non-perturbative’ phenomenon.

2 4

–1.8

–1.4

E / t'

U / t'

Figure 8. TheU -dependence ofEmin(0) (grey curve) andEmin(1) (black line) in the toy model
with t = t ′. Only for this special parameter do we have ferromagnetism,Emin(0) > Emin(1),
for any value ofU > 0. One can regard this case as the simplest example of the flat-band
ferromagnetism that we will discuss in section 6.4.

The only exception is the case witht = t ′. See figure 8. For this parameter value,
the ground states are degenerate in spin whenU = 0. The ferromagnetic state is the only
ground state forU > 0.

From figures 7 and 8, we find that the energyEmin(1) of ferromagnetic states is
independent ofU . As we see in the following, this is a general property of ferromagnetic
eigenstates in the Hubbard model. An arbitrary state9 which has total spinStot = Smax

can be written as a superposition of states which are obtained by rotating the state9̃ which
consists only of up-spin electrons. If one operates with the interaction HamiltonianHint,
equation (2.5), on the statẽ9, one hasHint9̃ = 0 becausenx,↓9̃ = 0. Since the interaction
Hamiltonian (2.5) is invariant under rotation in spin space, we have shown thatHint9 = 0.
One might say that states with saturated magnetization do not ‘feel’ Hubbard-type interaction
at all. This is one of the convenient (but ‘oversimplified’) features encountered in discussing
saturated ferromagnetism in the Hubbard model.

6.3. Nagaoka’s ferromagnetism

The transitions between the states in figure 6 are generated by hoppings of electrons. One can
also regard the transitions as caused by hoppings of a single hole†, which is the site without
electrons. At least in the limitU → ∞, one can say that the origin of ferromagnetism in
the toy model is the motion of a single hole, which mixes up various spin configurations

† This is different from the notion of a hole in the usual band theory.
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Figure 9. A schematic picture relating to the origin of Nagaoka’s ferromagnetism. When the
hole hops around the lattice, the spin configuration is changed. For a model withtx,y > 0, the
hole motion produces a precise linear combination of various spin configurations which leads
to a ferromagnetic state.

with proper signs.
As Nagaoka [26] demonstrated rigorously, there is a class of many-electron models in

which saturated ferromagnetism is generated by exactly the same mechanism. See figure 9.
Nagaoka’s theorem (in the extended form of [27] whose complete proof can be found in
[2]) is as follows.

Theorem 6.3 (Nagaoka’s ferromagnetism).Take an arbitrary finite lattice3, and assume
that† tx,y > 0 for any x 6= y, andUx = ∞ for any x ∈ 3. We fix the electron number
asNe = |3| − 1. Then among the ground states of the model, there exist states with total
spin Stot = Smax (=Ne/2). If the system further satisfies the connectivity condition, then
the ground states haveStot = Smax (=Ne/2) and are non-degenerate apart from the trivial
spin degeneracy.

The connectivity condition is a simple condition which holds on most of the lattices in
two or more dimensions, including the square lattice, the triangular lattice, and the cubic
lattice. To be precise, the condition requires that ‘by starting from any electron configuration
on the lattice and by moving around the hole along non-vanishingtx,y , one can get any other
electron configuration’.

Thouless reached a similar conclusion [28], but Nagaoka’s treatment covers a larger class
of models including non-bipartite systems. The proof of Nagaoka’s theorem (especially
the recent proof in [27]) is surprisingly simple. It essentially uses the Perron–Frobenius
argument exactly as we used it in section 6.2 to determine the total spin of the ground state
of the toy model.

The requirements thatU should be infinitely large and that there should be exactly
one hole are admittedly rather pathological. Nevertheless, the theorem is very important
since it showed for the first time in a rigorous manner that quantum mechanical motion of
electrons and strong Coulomb repulsion can generate ferromagnetism. The conclusion that
the system which has one less electron than the half-filled model exhibits ferromagnetism is
indeed surprising. This is a very nice example which demonstrates that strongly interacting
electron systems produce very rich physics.

It is desirable to extend Nagaoka’s ferromagnetism to systems with a finiteU and with
a finite density of holes. Although more than thirty years have passed since Nagaoka’s
and Thouless’s papers, it is still not known whether such extensions are possible. There

† As we noted in section 2.1, this sign oftx,y is opposite to the ‘standard’ choice. In bipartite systems (such as
those on the square lattice or the cubic lattice with nearest-neighbour hoppings), one can change the sign oftx,y
by making a gauge transformation.
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are, however, a considerable number of rigorous works which establish that saturated
ferromagnetism is not found in certain situations. See, for example, [29–34].

6.4. Mielke’s ferromagnetism and flat-band ferromagnetism

Let us once again look at the toy model of section 6.2. As is shown in figure 8, the
ground state of the model exhibits ferromagnetism for anyU > 0 for the special choice of
the parameterst = t ′ > 0. For this choice of parameters, the energy eigenvalues of the
corresponding Schrödinger equation areε1 = ε2 = −t ′, andε3 = 2t ′. The single-electron
ground states are doubly degenerate. As a consequence, the ground states of the two-electron
system withU = 0 are also degenerate, and can haveStot = 0 or Stot = 1. The degeneracy
is lifted for U > 0, and the ferromagnetic state is ‘selected’ as the true and unique ground
state. It is crucial here that the dimension of the degeneracy in the single-electron ground
states (which is two) is the same as the electron numberNe = 2.

Figure 10. The Hubbard model on the kagomé lattice is a typical example which exhibits flat-
band ferromagnetism. ‘Kagoḿe’ is a Japanese word for a pattern of woven bamboo in baskets.

Mielke [35] showed that there is a class of Hubbard models with many electrons which
show saturated ferromagnetism through a somewhat similar mechanism. Take, for example,
the kagoḿe lattice of figure 10, and define a Hubbard model on it by settingtx,y = t > 0
for neighbouring sitesx and y, tx,y = 0 for other situations, andUx = U > 0 for any
x ∈ 3. It is worth mentioning that the kagoḿe lattice of figure 10 can be regarded as
constructed by putting together many copies of the lattice used in the toy model (figure
5). The energy eigenvalues of the corresponding Schrödinger equation can be shown to
satisfy ε1 = ε2 = · · · = εM = −2t , andεj > −2t for j > M. Here the dimensionM of
the degeneracy of the single-electron ground states is given byM = (|3|/3) + 1, and is
proportional to the lattice size.

We shall fix the electron number asNe = M, i.e. the same as the dimension of the
degeneracy.

Let us consider the case withU = 0 first. Let A and B be arbitrary subsets of
{1, 2, . . . , Ne} which satisfy |A| + |B| = Ne, and consider the state8A,B , equation
(3.4), obtained by creating the corresponding single-electron eigenstates. In the present
model on the kagoḿe lattice, the fermion operatora†j,σ , equation (3.2), creates one of
the single-electron ground states with the energyε = −2t . This means that we have
Hhop8A,B = −2tNe8A,B for arbitrary choice ofA andB, and hence8A,B is a ground
state ofH = Hhop. We find that the ground states are highly degenerate, and can have
Stot = 0, 1, . . . , Smax= M/2 (or Stot = 1/2, . . . , Smax).

What is the effect of non-vanishing Coulomb interactionU in such a situation? Let us
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denote by8↑ the state obtained by settingA = {1, 2, . . . , Ne} andB = ∅ in 8A,B . Of
course8↑ is one of the ground states ofHhop. As we discussed at the end of section 6.2, the
state8↑ which consists only of up-spin electrons ‘does not feel’ Hubbard-type Coulomb
interaction. This means that we haveHint8↑ = 0. Since 0 is the minimum possible
eigenvalue ofHint, we find that the state8↑ is a ground state of the total Hamiltonian
H = Hhop+Hint for anyU > 0.

These are all simple observations. A really interesting problem is that of whether there
can be ground states other than8↑ whenU > 0. The following theorem due to Mielke
shows that the ferromagnetic state is indeed ‘selected’ as the true ground state exactly as in
the toy model.

Theorem 6.4 (Mielke’s flat-band ferromagnetism).Consider the Hubbard model on the
kagoḿe lattice described above. For anyU > 0, the ground states haveStot = Smax (=M/2)
and are non-degenerate apart from the trivial spin degeneracy.

Mielke [36] also extended his results to the situation where the electron density† Ne/|3|
is less than 1/3 but close to 1/3.

In Mielke’s work, it was proved for the first time that the Hubbard model with finite
U can exhibit saturated ferromagnetism. The model is very simple, and the result is very
important. As far as the author is aware, there had been no discussions about the possibility
of ferromagnetism in the Hubbard model on the kagomé lattice. Mielke’s work is not only
mathematically rigorous, but important from the physicists’ point of view as it opened up a
new way of approaching itinerant-electron ferromagnetism.

Mielke’s proof of his main theorem is an elegant induction which makes use of a
graph-theoretic language. The proof is not at all trivial since the problem is intrinsically
a many-body one. However, there is a very special feature of the model, namely that any
ground state of the total HamiltonianH = Hhop+Hint is at the same time a ground state of
each ofHhop andHint. Because of this property, one does not have to face the very difficult
problem that often arises in many-body problems called the ‘competition betweenHhop and
Hint’. That one has ferromagnetism in this model for anyU (>0) is closely related to this
fact.

Mielke’s theorem applies not only to the Hubbard model on the kagomé lattice but also
to those on a wide class of lattices called line graphs. In all of these models, the ground
states in the corresponding single-electron Schrödinger equation are highly degenerate.
There have been constructed [37, 38] other examples of Hubbard models in which the
corresponding single-electron ground states are highly degenerate, and exhibit saturated
ferromagnetism for anyU > 0. Ferromagnetism in the examples of Mielke and in [37, 38]
are now called flat-band ferromagnetism‡. Mielke [39] obtained a necessary and sufficient
condition for a Hubbard model with highly degenerate single-electron ground states to
exhibit saturated ferromagnetism. It is interesting that Lieb’s ferrimagnetism discussed in
section 5.3 resembles flat-band ferromagnetism in that the corresponding single-electron
spectrum has a bulk degeneracy.

Needless to say, the models in which single-electron ground states are highly degenerate
are rather singular. By adding a generic small perturbation to the hopping Hamiltonian, the
degeneracy is lifted in general, and one gets a nearly flat lowest band rather than a completely
flat one. A very interesting and important problem is that of whether ferromagnetism remains

† There is a minor error in the derivation of the critical electron density in Mielke’s paper. One should modify
this part by using the method of [38].
‡ From the viewpoint of band structure in the single-electron problem, the bulk degeneracy in the single-electron
ground states corresponds to the lowest band being completely dispersionless (or flat).
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stable after such a perturbation is added. Of course one does not have ferromagnetism for
small enoughU if the bulk degeneracy in the single-electron ground states is lifted. What
one expects is the ferromagnetism to remain stable whenU is sufficiently large. (Recall that
in the toy model of section 6.2, we had ferromagnetism for allU > 0 only for the special
choice of parameterst = t ′.) There are some indications (from numerical or variational
calculations) that ferromagnetism is stable under perturbation. As regards rigorous results,
stability of ferromagnetism under single-spin flip is proved in [40, 41] for the model obtained
by adding an arbitrary small perturbation to the Hubbard model of [37, 38]. For a special
class of perturbations, the problem of stability of ferromagnetism is completely solved, as
we shall see in the next section.

6.5. Ferromagnetism in a non-singular Hubbard model

We have seen two theorems which show that certain Hubbard models exhibit saturated
ferromagnetism. In Nagaoka’s theorem, it is assumed that the system has exactly one
hole, and has infinitely large Coulomb interaction. In Mielke’s theorem and other flat-band
ferromagnetism models, it is essential that the single-electron ground states have a bulk
degeneracy. Is it possible to prove the existence of saturated ferromagnetism in a non-
singular Hubbard model which has finiteU and in which the single-electron spectrum is
not singular? Recently such examples were constructed [42].

–s –s

t' t' t' t' t' t'

t t t

Figure 11. An example of a non-singular Hubbard model which exhibits saturated
ferromagnetism [42]. If we look at three adjacent sites, the lattice structure and the hopping
resemble those of the toy model of figure 5.

For simplicity, we concentrate on the simplest models in one dimension†. Take the
one-dimensional lattice3 = {1, 2, . . . , N} with N sites (whereN is an even integer), and
impose a periodic boundary condition by identifying the siteN + 1 with the site 1. The
hopping matrix is defined by settingtx,x+1 = tx+1,x = t ′ for any x ∈ 3, tx,x+2 = tx+2,x = t
for evenx, tx,x+2 = tx+2,x = −s for odd x, and tx,y = 0 otherwise. Heret > 0 ands > 0
are independent parameters, but the parametert ′ is determined ast ′ = √2(t + s). As can
be seen from figure 11, the model‡ has two kinds of next-nearest-neighbour hopping,t and
−s, as well as the nearest-neighbour hoppingt ′. If we look at an odd site and the two
neighbouring even sites, the model is exactly the same as the toy model that we treated in
section 6.2. Roughly speaking, this resemblance is the basic origin of ferromagnetism in
the present model. We also note that because there are next-nearest-neighbour hoppings,
the Lieb–Mattis theorem (theorem 4.1) does not apply to the present model.

† There are models in more dimensions [43]. In the original paper [42], the model contains an additional parameter
λ > 0. Here we have setλ = √2 to simplify the discussion. The proof of the main theorem in [42] is considerably
improved in [43]. The conditionλ > λc in [42] is replaced byλ > 0.
‡ Solvable Hubbard models withU = ∞ which have similar structure to the present models were found by Brandt
and Giesekus [44], and were extended in [45–48]. The conjectured uniqueness of the ground state was proved in
[49, 48]. The ground-state correlation functions in one-dimensional models were calculated exactly in [49, 50],
and insulating behaviour was found. (Reference [47] contains an error which is corrected in footnote 6 of [48].
Although I discussed the possibility of superconductivity in these models in [47], I am not very optimistic about
this conjecture at present.)
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The single-electron energy eigenvalues in this model can be expressed by using the
wavenumberk = 2πn/N (n = 0,±1, . . . ,±{(N/4)− 1} , N/4) as

ε1(k) = −2t − 2s(1+ cos 2k)

and

ε2(k) = 2s + 2t (1+ cos 2k).

There are two bands, and each of them has ‘healthy’ dispersion.
As for the Coulomb interaction, we setUx = U > 0 for anyx ∈ 3. We fix the electron

number asNe = N/2. In terms of filling factor, this corresponds to quarter-filling. The
maximum possible value of the total spin isSmax= N/4.

Unlike in flat-band ferromagnetism, there is no saturated ferromagnetism whenU is
sufficiently small. Theorem 6.1 ensures that the ground state hasStot < Smax if U < 4s.
If the present system were to show saturated ferromagnetism, it should be in the ‘non-
perturbative’ region with sufficiently largeU . The following theorem of [42] provides such
a non-perturbative result.

Theorem 6.5 (ferromagnetism in a non-singular Hubbard model).Suppose that the two
dimensionless parameterst/s andU/s are sufficiently large. Then the ground states have
Stot = Smax (=N/4) and are non-degenerate apart from the trivial spin degeneracy.

The theorem is valid, for example, whent/s > 4.5 if U/s = 50, and whent/s > 2.6 if
U/s = 100. The ferromagnetic ground state can be constructed in exactly the same manner
as8↑ in the previous section.

Although the model is rather artificial, this is the first rigorous example of saturated
ferromagnetism in a non-singular Hubbard model on which we have to overcome the
competition betweenHint andHhop. In a class of similar models, it is also proved that
low-lying excitation above the ground state has the normal dispersion relation of a spin-
wave excitation [42, 41]. Starting from a Hubbard model of itinerant electrons, the existence
of a ‘healthy’ ferromagnetism is established rigorously.

If we set s = 0 in the present model, the ground states of the single-electron
Schr̈odinger equation become(N/2)-fold degenerate. In this case, the model exhibits
saturated ferromagnetism (flat-band ferromagnetism) for anyU > 0. Theorem 6.5 for
s 6= 0 can be regarded as a solution to the problem of stability of flat-band ferromagnetism
against perturbation to the hopping Hamiltonian.

The basic strategy in the proof of theorem 6.5 is first to establish the existence of
saturated ferromagnetism in a Hubbard model on a chain with five sites, and then ‘connect’
together these local regions of ferromagnetism to get ferromagnetism throughout the whole
system. Generally speaking, this is a crazy idea! In a quantum mechanical system, especially
in a system with ‘healthy’ dispersion (like the present one), electrons have strong tendency
to extend in a large region and reduce the kinetic energy. To confine electrons in a finite
region usually costs extra energy. To obtain exact information about a large system from
a smaller system seems to be impossible. The reasons that such a strategy works in the
present model are twofold. One is the special construction of the model. The other is that
we described electron states using a language which takes into account both the particle-like
character of electrons and the band structure of the model. The latter is a natural strategy
for dealing with the Hubbard model, in which wave–particle dualism generates interesting
physics.

It is believed that the ground states of the present Hubbard model describe an insulator.
When the electron number is less thanN/2, we expect the present model to exhibit metallic
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ferromagnetism in which the same set of electrons participate in conduction as well as
magnetism†. For the moment, we still do not know of any useful ideas regarding how to
prove this fascinating conjecture.
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